Соосность вертикальных конструкций это
Перейти к содержимому

Соосность вертикальных конструкций это

  • автор:

Не соблюдалась соосность вертикальных конструкций при монтаже балки.

При проверке объекта специалистами Ростехнадзора выдали вот такое замечание (см. закрепленный скрин).
Подскажите нормативный документ (СП или СНиП) где можно посмотреть предельные допускные отклонения в моём случае.
Заранее спасибо

Просмотров: 5926

sitdikov.live
Посмотреть профиль
Найти ещё сообщения от sitdikov.live

Регистрация: 20.04.2010
Сообщений: 102

скорее всего СНиП 3.03.01-87 «Несущие и ограждающие конструкции»
3. МОНТАЖ СБОРНЫХ ЖЕЛЕЗОБЕТОННЫХ И БЕТОННЫХ КОНСТРУКЦИЙ
ОБЩИЕ УКАЗАНИЯ
3.7. Предельные отклонения от совмещения ориентиров при установке сборных элементов, а также отклонения законченных монтажных конструкций от проектного положения не должны превышать величин, приведенных в табл. 12.

для наглядности из «135-06. КАРТЫ ОПЕРАЦИОННОГО КОНТРОЛЯ КАЧЕСТВА. Часть 1. МОНТАЖ СБОРНЫХ ЖЕЛЕЗОБЕТОННЫХ КОНСТРУКЦИЙ»
Отклонение от совмещения ориентиров (рисок геометрических осей, граней) в нижнем сечении ферм (балок) с установочными ориентирами (рисками геометрических осей или гранями нижележащих элементов)
позиция 1 на картинке

Изображения

Сним.JPG (89.9 Кб, 2398 просмотров)
Снк.JPG (157.0 Кб, 2268 просмотров)

__________________
«Знание бывает двух видов. Мы либо знаем предмет сами, либо знаем, где можно найти о нем сведения.»

Оснащение проходки горных выработок, ПОС, нормоконтроль, КР, АР

Регистрация: 30.01.2008
Сообщений: 18,652

СНиП 3.03.01-87 Несущие и ограждающие конструкции
Рабочая документация (если вдруг там почему-то решили ужесточить допуски по сравнению со СНиП)

Скорее всего колонна в плане ушла.

1.19. При отсутствии в рабочих чертежах специальных требований пре*дельные отклонения совмещения ориентиров (граней или рисок) при уста*новке сборных элементов, а также отклонения от проектного положения законченных монтажом (возведением) конструкций не должны превышать значений, приведенных в соответствующих разделах настоящих норм и правил.
Отклонения на установку монтажных элементов, положение которых может измениться в процессе их постоянного закрепления и нагружения последующими конструкциями, должны назначаться в ППР с таким ра*счетом, чтобы они не превышали предельных значений после завершения всех монтажных работ. В случае отсутствия в ППР специальных указаний величина отклонения элементов при установке не должна превышать 0,4 предельного отклонения на приемку.

ПРИЕМКА БЕТОННЫХ И ЖЕЛЕЗОБЕТОННЫХ КОНСТРУКЦИЙ ИЛИ ЧАСТЕЙ СООРУЖЕНИЙ
2.113. Требования, предъявляемые к законченным бетонным и железо*бетонным конструкциям или частям сооружений, приведены в табл. 11.

1. Отклонение линий плоскостей пере*сечения от вертикали или проектного наклона на всю высоту конструкций для:
стен и колонн, поддерживающих монолитные покрытия и пере*крытия Предельные отклонения 15 мм
стен и колонн, поддерживающих сборные балочные конструкции Предельные отклонения 10 мм
Контроль (метод, объем, вид регистрации) — Измерительный, каждый конструк*тивный элемент Offtop: (то есть, имхо, колонна на всю высоту здания) , журнал работ

Теперь надо заказывать проектировщикам согласование внепроектных отклонений. Вполне может быть что и пройдёте по новому расчёту.
Только вот Ростехнадзор — организация серьёзная, примет ли она согласование проектировщиков не знаю. Но другого пути нет всё равно, только здание разбирать или усиливать.
Ещё часто изменение РД заказывают, в РД делать кривые колонны. Тогда отклонений от РД как бы и нет.

__________________
«Безвыходных ситуаций не бывает» барон Мюнхаузен
Последний раз редактировалось Tyhig, 01.08.2014 в 12:40 .

Контроль соосности колонн зданий и сооружений

Анализ технического состояния несущих конструкций зданий и сооружений (в частности колонн) предусматривает, кроме прочих, использование результатов геодезического контроля соосности таких колонн в ряду. При этом особый интерес представляет отклонение верха колонн от оси сооружения, под которой будем понимать линию, соединяющую нижние центры начальной и конечной колонн в ряду.

Определение соосности колонн в ряду может осуществляться путём створных измерений от некоторой прямой, называемой референтной или от вертикальной плоскости, формируемых в пределах контролируемого участка.

Схемы к определению приведенных к оси колонны отсчётов

Рис. 105. Схемы к определению приведенных к оси колонны отсчётов

В условиях действующего предприятия выполнение створных измерений от вертикальной плоскости путём одновременного бокового нивелирования верха и низа колонн зачастую бывает затруднено или невозможно ввиду недоступности низа колонн из-за насыщенности производственных помещений технологическим оборудованием. Поэтому нами были разработаны: способ бокового нивелирования только верха колонн путем оптического визирования и методика приведения результатов измерений к оси сооружения.

Процесс измерений заключается в следующем. Теодолит устанавливают на некотором расстоянии от ряда колонн в месте, обеспечивающем видимость верха всех колонн (например, на тормозной площадке нерабочего крана или иной площадке). Визирный луч зрительной трубы ориентируют приблизительно параллельно этому ряду. Затем, последовательно прикладывая нивелирную рейку горизонтально к верхней грани каждой колонны, берут отсчёты О, по вертикальной нити сетки зрительной трубы (рис. 105).

Эти отсчёты приводят к осям колонн, вводя в них поправки, учитывающие размеры колонн понизу сн и поверху св. Так, в первом случае (рис. 105а) приведённый отсчёт а, = О, + свс/2, а во втором случае (рис. 1056) а, = О, + Cj/2 . Причём, проекция визирной оси зрительной трубы теодолита на горизонтальную плоскость будет играть роль референтной линии, относительно которой ряд колонн может находиться слева или справа (рис. 106).

Произвольное расположение референтной линии требует определения её ориентирования относительно оси сооружения. Для этого одним из доступных способов вертикального проектирования (с помощью специальных приборов, теодолита, отвеса и др.) измеряют отклонения от вертикали осей начальной и конечной колонн ряда, а именно величины Ни Кв направлении, перпендикулярном оси сооружения (рис. 106). При этом для левого ряда колонн отклонение верха начальной Н, конечной К и z-той колонны /,• влево от оси сооружения принимается со знаком «плюс», вправо Н’, К’ и / / — со знаком «минус». И наоборот, для правого ряда колонн отклонение верха начальной Н, конечной К и z-той колонны /, вправо от оси сооружения принимается со знаком «плюс», влево Н’, К’ и /)- со знаком «минус». Сами колонны нумеруются, начиная с нуля, то есть 0,1, 2 . i. п.

Согласно рис. 106, для левого ряда колонн справедливы равенства а, +х, — I, = ан — Н, хк = (ан -Н) — (ак — К), а для правого ряда колонн а, — х, — I, = аи— Н, хк= (ак — К) — (ан — 77) и в обоих случаях х, = xKS/Si. Решая эти равенства относительно /(, получим следующее выражение:

В этом выражении вместо отношения расстояний S/S, можно использовать соответствующее отношение номеров колонн i/n, а значения Н и К вводить в формулу со знаком «плюс», значения Н’и К- со знаком «минус». По этой формуле можно получить положительное или отрицательное значение отклонения верха /-той колонны. Положительное значение соответствует отклонению lj, отрицательное соответствует отклонению / /.

Схемы к определению отклонения верха колонн от оси сооружения

Рис. 106. Схемы к определению отклонения верха колонн от оси сооружения

Рассмотрим все возможные случаи сочетания Н, К, Н’, и /С’для следующего примера: 5 = 78 м, 5, = 48 м, п = 13, / = 8, S/S, = i/n = 0,615. В табл. 14 результаты измерений и вычислений даны в миллиметрах.

Результаты измерений приводят к осям колонн, вводя в них поправки, учитывающие размеры колонн левого и правого ряда понизу Лн , Пн и поверху Лв , Пв. Так, согласно рис. 107, приведенное к оси сооружения расстояние между колоннами L, составит:

L,— L + L? + (Лв+ Пв) — (Лн + Пи)/2, (96)

а приведенный к оси колонны отсчёт а, будет:

т ц = гп^ = 3 мм для различных значений ошибок определения ширины колонн поверху и понизу тв = /ян = 1; 3; 5; 7 и 10 мм. Полученные результаты представлены на графиках (рис. 109).

Графики зависимости ошибки m от ошибок и /ин

Рис. 110. Графики зависимости ошибки mai от ошибок и /ин

Как проверять центровку агрегатов

Как проверять центровку агрегатов

Предварительная центровка агрегатов — залог безаварийной эксплуатации привода. Не сверяя соосность валов, владельцы машин и механизмов рискуют своим имуществом, а в некоторых случаях и жизнью операторов или случайных прохожих. Возникающее из-за отсутствия соосности радиальное биение разрушает валы, муфты, кожухи и подшипники, вынуждая оплачивать ремонт оборудования. В тяжелых случаях такое биение разваливает крепление агрегата к опоре или фундаменту. Потерявший опору агрегат приходит в полную негодность — крутящий момент разбивает ротор и корпус, осколки которого повреждают стены, несущие конструкции и окружающих людей.

ООО Фирма «ЮСТАС» поможет избежать такого сценария, предложив заказчику быструю проверку муфт и валов на соосность. На основе наших рекомендаций можно провести точную регулировку положения роторов, устраняя или снижая до безопасного уровня разрушительное радиальное биение. Метрологи фирмы готовы выехать в любой регион России со всем оборудованием, необходимым для измерения биения.

Разновидности расцентровки

В идеальных условиях геометрические оси совмещенных агрегатов или узлов находятся на одной прямой. В реальности положение вала одного механизма не совпадает с центральной осью другого аппарата в 99 случаях из 100. Этот дефект возникает из-за прогнозируемых отклонений (допусков на изготовление и сборку деталей) или брака в работе монтажников. Вследствие этих причин возникают следующие виды несоосности:

  • параллельные (радиальные) дефекты — в этом случае выверка валов обнаруживает смещение без пересечения осей;
  • угловые (торцевые) дефекты — такая расцентровка возможна при пересечении осей в зоне муфты;
  • смешанные дефекты — здесь осевые линии валов смещаются и пересекаются за границами соединительной муфты.

Параллельная несоосность измеряется в миллиметрах. При измерении углового отклонения указывается величина зазора (в миллиметрах) на каждые 10 сантиметров длины вала. Совмещенная расцентровка обозначается как параллельное и угловое отклонение.

В большинстве случаев при соединении валов двух агрегатов возникает смешанная расцентровка, с взаимным смещением и перегибом валов. Если ее величина не влияет на рабочие характеристики и срок службы узлов и механизмов — дефект соосности игнорируется. В ином случае выполняется центровка осей, предполагающая регулировку положения роторов и другие мероприятия.

Дополнительные факторы влияния на валовое центрирование

К дополнительным факторам, провоцирующим увеличение радиального и торцевого дефекта, относят:

  1. Отклонение ротора от горизонтального положения — ошибки при монтаже приводят к сокращению срока эксплуатации оборудования.
  2. Недостаточное затяжное усилие крепежных болтов — любое ослабление крепежных узлов нарушает общую центровку механизма.
  3. Низкое качество подшипников — дефекты в узлах скольжения и качения приводят к увеличению радиального биения.
  4. Повреждения рамы — трещины и каверны в балках провоцируют нарушение центровки во время эксплуатации оборудования.
  5. Неравномерную осадку основания — из-за этого возникают дефекты рамы и отклонения валов от горизонтали.

Инженеры Фирмы «ЮСТАС» не начинают проверять ось ротора до того, как выполнят исполнительную съемку основания. В процессе геодезической съемки фундамента определяются фактические габариты и планово-высотное положение всей конструкции. Отклонение от проектных величин фиксируется в отдельном документе. Полученные данные влияют на предлагаемые способы центровки, позволяя прогнозировать смету и сроки завершения работ.

После завершения предварительных геодезических измерений выполняется проверка центровки роторов, муфт, шкивов и прочих узлов, передающих крутящий момент.

Определение отклонений соосности — основные методики проверки

В метрологии существует два способа определения расцентровки валов:

  • радиально-осевая технология, позволяющая проверять центровку одного из валов при разомкнутой муфте;
  • метод обратных индикаторов основанный на измерении радиального смещения двух валов.

Оба способа предполагают сравнение положения контрольных точек, нанесенных на первый и второй вал (или на полумуфты). Контрольная выверка положения этих точек происходит после разворота первого и второго ротора на 180 градусов. Разворот выполняют дважды, перемещая контрольные точки по вертикали и горизонтали.

Для чистоты эксперимента для выверки положения ротора берут точки удаленные от его оси на максимальное расстояние. Если для съема данных используется лазерный прибор — контрольную точку размещают на специальной штанге, закрепленной на валу.

Метрологи фирмы используют методику обратных индикаторов и лазерные инструменты, что позволяет сократить время измерений. В этом случае достаточно повернуть роторы на угол от 20 до 90 градусов в любом направлении. В этом положении лазерный сканер определяет расстояния:

  • между точками крепления индикаторов;
  • от полумуфты до ближайшей опоры агрегата;
  • между плоскостями опор.

Считывание данных с двух валов позволяет компенсировать ошибки, вызванные осевым люфтом подшипников. Применение лазера обеспечивает прямые замеры в четырех положениях (по крайним точкам в горизонтальной и вертикальной плоскости). После окончания замеров можно переходить к регулировке.

Как выполняется регулировка соосности узлов и механизмов

Если величина радиальной и торцевой несоосности превышает допуск на центровку, стандартную муфту заменяют компенсирующим узлом, который компенсирует возникающее в процессе работы радиальное и торцевое биение. Компенсирующие муфты передают крутящий момент без серьезных потерь и компенсируют биение за счет поглощения нагрузки упругими элементами.

Метрологи Фирмы «ЮСТАС» предлагают заказчику быстрое и точное измерение соосности до и после установки компенсатора. Предварительная проверка соосности узлов, деталей и роторов машин помогает найти лучшую модель компенсатора. Его параметры определяют по фактическому радиальному и торцевому отклонению, выбирая муфту, способную отрегулировать соосность в этих условиях. Для машин малой и средней мощности подбирают упругие втулочно-пальцевые компенсаторы, а на мощный насосный агрегат ставят компенсирующие зубчатые муфты.

Повторный контроль расцентровки гарантирует долгий срок службы компенсирующего узла. Соединительная муфта сохраняет компенсирующий эффект только в определенном диапазоне угловых скоростей, поэтому проверка полумуфт в рабочем режиме является важной частью мониторинга расцентровки. Кроме того, повторный контроль позволяет избежать последствий динамической расцентровки.

Особенности регулировки динамической расцентровки

После проверки и устранения статической расцентровки (в неподвижных вала и полумуфтах) метрологии фирмы оценивают соосность работающих роторов. Для этого необходимо запустить и отключить агрегат, дождаться остановки муфты и выполнить измерение несоосности:

  • до и после размыкания муфты;
  • на разных начальных углах поворота ротора;

Если результаты замеров укладываются в тройную ошибку измерительного прибора, динамическая расцентровка признается несущественной. Аналогичное решение принимают в том случае, если момент сил, достаточный для поворота ротора на определенный угол, отличается при замерах с разных исходных точек на тройную ошибку измерительного прибора.

Когда результаты измерения показывают значения, превышающие тройную ошибку, метрологи указывают на наличие динамической расцентровки. Косвенным подтверждением этого дефекта считают высокий уровень вибрации на одной или двух опорах агрегата, а также появление в спектре биения подшипников следов, указывающих на вибрацию ротора. При совпадении косвенных признаков и расхождений в измерениях соосности на разных углах поворота необходимо выполнить регулировку узла компенсации.

Центровка соосности при динамическом биении начинается с разворота полумуфт компенсатора относительно друг друга. Кроме того, механики могут подобрать упругие вкладыши с большей или меньшей жесткостью. Если это не помогло, владельцу агрегата придется купить новую компенсационную муфту и заказать услуги по измерению несоосности и регулировке положения роторов.

Услуги

Метрологи и геодезисты фирмы готовы предложить заказчику комплексные изыскания для проверки несоосности узлов и деталей, передающих крутящий момент. В услугу входят следующие работы:

  1. Проверка фундамента и рамы — геодезисты организуют съемку основания и направляющих лазерным трекером, составляя исполнительный чертеж, на котором указывают все отклонения от проектных размеров.
  2. Центровка ротора в горизонтальной и вертикальной плоскости — лазерный трекер позволяет снять показания с точностью до 0,001мм.
  3. Проверка узлов крепления на «мягкую лапу» — в этом случае проверяется планово-высотное положение всех опор корпуса.
  4. Выявление источника вибрации — лазерный трекер оценивает положение корпуса, валов, муфт и подшипников в динамике, определяя узлы с максимальной амплитудой колебаний.

Своевременная центровка роторов и муфт продлевает срок службы агрегатов, а также снижает энергопотребление механизма. ООО Фирма «ЮСТАС» готова к сотрудничеству со всеми клиентами. Наши лицензии позволяют проводить метрологические и геодезические измерения в любом регионе России. Цену и сроки выполнения заказа можно уточнить по телефонам +7 (499) 141-82-71 или +7 (499) 141-72-62.

ВВЕДЕНИЕ

Понятия, связанные с техническим обследованием зданий и сооружений, в литературных источниках имеют различные толкования и обозначаются различными терминами. А.И. Суббето / 71 / под понятием «обследование» понимает процесс контроля, испытаний, анализа и оценки: «возрастной структуры» пассивной и активной части основных фондов; характера и объема разрушений в послеаварийной ситуациях; возможностей восстановления, реконструкции, модернизации, расширение объектов; возможных стратегий научно-технического обновления; состояния внешней и внутренней «экономической среды»; уровня загрязненности производства; степени агрессивности загрязнений; возможности утилизации отходов и т.п. А.И. Суббетто рассматривает техническое и инженерно-геологическое обследования как две самостоятельные «системы блоков», из семи обследований: № 1 экономического, № 2 — экологического, № 3 — социального, № 4 — эргомического, № 5 — научно-технического, № 6 — технического (архитектурно-строительного), № 7 — инженерно-геологического. Наличие или отсутствие тех или иных блоков по А.И. Суббето формирует представление о полноте «комплексного обследования».

Среди терминов, связанных с процессом технического обследования, наиболее часто встречается понятие «диагностика» / 71 , 74 /. Диагностика по А.И. Суббето выступает, с одной стороны, как часть «обследования», а с другой — как достаточно самостоятельный предмет теории.

В справочнике / 74 / вообще отсутствует понятие «обследование» а рассматривается «техническая диагностика». Она определяется как отрасль научно-технических знаний, сущность которых составляют теория, методы и средства обнаружения, а также поиск дефектов объектов технической природы. Под дефектом при этом подразумевается любое несоответствие свойств объекта заданным, требуемым или ожидаемым его свойствами. Обнаружение и поиск дефектов — это процессы определения технического состояния объекта, объединяющиеся под общим термином «диагностирование». Результатом последнего является «диагноз».

В справочном пособии / 73 / техническая диагностика определяется как научная дисциплина, изучающая технические системы (в том числе здания и сооружения, а также их элементы), устанавливающая причины возникновения отказов и повреждений, разрабатывающая методы их обнаружения и оценки. Главной задачей диагностики как науки является разработка методов и средств получения всеобъемлющей информации о техническом состоянии объектов. Конечная цель диагностики зданий и сооружений состоит в мотивированном заключении о техническом состоянии отдельных инструкций и зданий в целом, их эксплуатационной пригодности, в получении сведений о том, какие отклонения от нормы имеются и где. Такое толкование технической диагностики совпадает с источником / 74 /.

У некоторых авторов / 3 , 38/ употребляется термин «техническая экспертиза», который по своей сути близок к понятию «техническая диагностика». Во многих литературных источниках применяются термины «обследование», «техническое обследование» / 28 , 32, 40, 69, 73 и д.р./. В технической литературе, посвященной эксплуатации зданий / 27 , 57/, используется термин «осмотр конструкции», который близок к понятию «диагностирование». Непосредственно к технической диагностике относится понятие «контроль качества конструкций».

В справочнике / 74 / рассматривается три типа задач определения технического состояния объектов. Первый тип составляют задачи определения технического состояния, в котором находится объект в настоящий момент. Это задача диагностирования. Задача второго типа — предсказание технического состояния, в котором окажется объект в некоторый будущий момент времени. Это задача прогнозирования. К третьему типу принадлежат задачи определения технического состояния, состояния, в котором находился объект в некоторый момент времени в прошлом. Это задачи генеза. Авторы / 74 / задачи первого типа относят к технической, диагностике, второго — к технической прогностике, а третьего — к технической генетике.

В то же время все эти задачи имеют отношения к техническому обследованию, поскольку в зависимости от цели обследования могут решаться задачи или всех типов одновременно, или только одного либо двух типов. Так, например, при аварии зданий и сооружений определяется эксплуатационное состояние сохранившихся конструкций (техническая диагностика), выявляет состояние конструкций перед аварией (техническая генетика), даются предложения о возможности использования зданий после восстановительных работ (техническая прогностика).

Таким образом, в настоящее время окончательно не сложилась терминология понятий, связанных с определением эксплуатационных качеств зданий и сооружений в период их осмотра, а также в моменты времени в прошлом и будущем.

В предлагаемой книге принято следующее толкование понятий.

Техническое обследование — процесс, который включает в себя контроль, испытания, анализ и оценку конструкций зданий и сооружений в целях выяснения эксплуатационных качеств конструкций, целесообразности ремонта и реконструкции зданий и сооружений, выяснение причин аварий, прогнозирование поведения конструкций в будущем.

Техническое диагностирование — процесс определения технического состояния строительных конструкций. Одна из основных задач диагностирования — выявления дефектов конструкций, выяснения причин их появления и установление влияния дефектов на эксплуатационные качества конструкций.

Техническое прогнозирование — предсказание на основе диагностирования того технического состояния, в котором окажется здание или сооружение в некоторый будущий момент времени.

Техническая генетика — определение на основе диагностирования того технического состояния, в котором находилось здание или сооружение в некоторый момент в прошлом.

Таким образом, в данной книге понятие, «техническое обследование зданий и сооружений» является наиболее общим и включает в себя в качестве составных частей понятия «техническая диагностика», «техническое прогнозирование» и «техническая генетика».

Техническое обследование зданий и сооружений производится в связи с предполагаемой их реконструкцией, обнаружением дефектов строительных конструкций, вызывающих сомнение в их эксплуатационных качествах, после аварий зданий или сооружений, при возобновлении строительства после длительного перерыва в строительно-монтажных работах.

Основанием к проведению технического обследования служит Задание, в котором указываются: мотивы для производства обследования, цель реконструкции, ориентировочно планируемые полезные нагрузки после реконструкции, существующие полезные нагрузки, планировочные решения и условия эксплуатации после реконструкции. В Задании на техническое обследование желательно приводить также донные о возможностях строительных организаций, которое предполагается привлечь к работе по реконструкции и ремонту здания или сооружения, об имеющихся у них строительных материалах, механизмах и др. (см. приложение 1 ).

До начала обследования следует изучить опыт проектирования и строительства, применявшиеся конструктивные решения, строительные материалы за исторический период, охватывающий время строительства и эксплуатации подлежащих обследованию зданий и сооружений. Обычно работы по обследованию выполняются в два этапа, т.е. проводится 1) предварительное или общее обследование; 2) детальное обследование. Иногда обследование ведется в один этап. Зависит это от задачи, состояния строительных конструкций и квалификации лиц, производящих обследование. Детальное обследование отнимает много времени и обходится дорого, поэтому необходимость в нем должна быть обоснована при предварительном или общем обследовании.

Предварительное или общее визуальное обследование может включать в себя:

— рекогносцировочный осмотр объекта;

— ознакомление с проектной и исполнительной документацией;

— визуальное обследование конструкций;

— выполнение обморочных чертежей;

— выполнение прикидочных поверочных расчетов некоторых конструкций;

— ориентировочную оценку состояния конструкций и объекта в целом;

— разработку плана дальнейших работ по обследованию;

— составление Заключения по результатам предварительного или общего обследования.

Предварительное или общее обследование начинается с осмотра конструкций здания или сооружения, ознакомления с технической документацией и другими материалами, помогающими составить представление об изучаемом объекте.

Изучение проектно-технической документации производится в целях определения периода строительства, времени проведения ремонтов, изменения условий эксплуатации, конструктивного решения здания или сооружения, расчетных нагрузок и воздействий, размещения оборудования, инженерно-геологических условий строительства и эксплуатации.

Помимо проектной документации должны быть изучены акты на скрытые работы, акты передачи в эксплуатацию, паспорта-сертификаты на материалы и сборные элементы, журнал производства работ, паспорт на объект документы о проведенных ремонтах, реконструкциях и др. В период предварительного обследования должны быть установлены отступления от проектных данных по объемно-планировочным, конструктивным решениям, по виду и характеру нагрузок. К сожалению, во многих случаях при обследованиях получить весь перечень необходимых документов не удается. Ценные сведения можно выявить из бесед с рабочими и инженерно-техническим персоналом, обеспечивающими эксплуатацию и технологический процесс обследуемого объекта.

При отсутствии проектно-технической документации или ее некомплектности производят обмеры конструкций и по ним выполняют обмерочные чертежи здания или сооружения. В процессе обморочных работ определяют размеры сечений и положение конструкций в пространстве (привязку к координатным осям и отметкам), условия опирания, конструкцию и качество сопряжении и стыков элементов, деформации конструкций, нарушение сплошности (отверстия, околы, раковины и др.), участки расслоения, увлажнения материалов конструкций и другие дефекты.

По результатам предварительного или общих обследований дают ориентировочную оценку технического состояния строительных конструкций и намечают программу дальнейшего детального обследования. При незначительных дефектах конструкций здания или сооружения и высокой квалификации производящего обследование специалиста на основе результатов общего обследования может быть сделана окончательная оценка технического состояния строительных конструкций.

Детальное визуально-инструментальное обследование объекта в наиболее общем виде включает в себя:

— изучение проектной и исполнительной документации;

— геологические и гидрогеологические изыскания;

— взятие проб материала и их испытания;

— проведение неразрушающих испытаний обследуемых конструкций;

— выполнение поверочных расчетов конструкций;

— оценку состояния строительных конструкций и обследуемого объекта в целом;

— составление Заключения по результатам детального обследования.

Детальное обследование производится с целью сбора окончательных обоснованных сведений для оценки технического состояния строительных конструкций. На основании этого обследования делается выбор конструктивного решения при реконструкции зданий и сооружений, а также усиления дефектных конструкций.

При детальных обследованиях:

— ставится задача получить уточненные данные о положении в плане и по высоте, сечении конструкций, значениях физико-механических характеристик материалов, дефектах конструкций, эксплуатационной среде, полезных нагрузках;

— принимается расчетная схема несущих конструкций;

— производятся поверочные расчеты элементов конструкций и сооружений в целом;

Инженерно-геологические изыскания выполняются при отсутствии рабочих чертежей фундаментов, исполнительных документов по их возведению и материалов об инженерно-геологических условиях площадки строительства обследуемого объекта, а также при расположении объекта на грунтовом основании, сложном в инженерно-геологическом отношении.

Детальное обследование конструкций бывает сплошным или выборочным.

Сплошное обследование производится в случаях, когда:

— отсутствует проектная документация;

— имеются дефекты конструкций, снижающие их несущую способность;

— в однотипных конструкциях неодинаковы свойства материалов, условия погружения, действие агрессивной среды.

Если в процессе сплошного обследования обнаруживается, что не менее 20% однотипных конструкций при общем их количестве более 20 находится в удовлетворительном состоянии, то допускается оставшиеся непроверенными конструкции обследовать выборочно. Объем выборочно обследуемых элементов должен определяться из конкретных условий (не менее 10% однотипных конструкций, но не менее трех) / 50 /.

После выполнения основных этапов обследования производится оценки технического состояния строительных конструкций, которая включает анализ результатов испытаний материалов и конструкций, окончательное определение нагрузок и воздействий, проведение поверочных расчетов несущих конструкций с учетом выявленных в них дефектов.

Итогом проведенного технического обследования является Заключение по результатам обследования здания или сооружения, в котором дается общая оценка эксплуатационного состояния объекта, приводятся рекомендации по дальнейшему его использованию и наблюдению за строительными конструкциями, а также предложения по усилению конструкций.

При выполнении работ по обследованию строительных конструкции необходимо вести строгий учет полученных данных в специальных журналах, оформлять акты обследований на различные виды работ, проводить фотофиксацию дефектов.

Глава 1. МЕТОДЫ ТЕХНИЧЕСКОГО ОБСЛЕДОВАНИЯ ЗДАНИЙ И СООРУЖЕНИЙ

При обследовании применяют визуальные и визуально-инструментальные методы. В случае визуального обследования используют простейшие инструменты: рулетки, отвесы, уровни, молотки, скарпели, дрели. При обследовании высоких зданий полезным является бинокль.

Для визуально-инструментального обследования кроме простейших приборов и инструментов применяют нивелиры, теодолиты, оборудование для проходки скважин, приборы и приспособления для разрушающих методов контроля материалов и др.

Предварительное или общее обследование выполняют с помощью визуальных и, частично, визуально-инструментальных методов. В случае детального обследования наряду с визуальными обязательно применение визуально-инструментальных методов.

Поскольку одной из основных целей технического обследования является выявление дефектов строительных конструкций и установление причин их возникновения, то лица, производящие обследование, должны быть хорошо знакомы с возможными дефектами обследуемых конструкций. Имеется достаточно обширная литература, посвященная описанию дефектов строительных конструкций и причин их появления, а также оценке влияния дефектов на эксплуатационные свойства конструкций / 2. 10 , 12. 23, 27, 28, 30, 34, 38, 40, 44, 46, 53, 67, 73 , 77, 78 и др./.

1.1. Визуальные методы технического обследования

В основе визуального обследования лежит осмотр здания или сооружения и отдельных конструкций с применением простейших приборов, не требующих специальных знаний для обращения с ними. При визуальном обследовании обнаруживаются видимые дефекты, производятся обмеры, зарисовки и фотографии дефектных мест, выявляются места, которые нужно обследовать более подробно с помощью диагностических инструментов.

Визуальное обследование, выполненное квалифицированными специалистами, позволяет получить значительный объем информации о состоянии конструкций и сооружений.

Основными инструментами визуального обследования являются: мерные ленты, рулетки, линейки, штангенциркули, отвесы, уровни, градуированные лупы и мерные микроскопы для выявления и измерения трещин, фотоаппараты со вспышкой, бинокли, дрели, перфораторы, молотки, топоры.

1.1.1. Визуальное обследование территории, прилегающей к обследуемому зданию или сооружению

При осмотре территории оценивают благоустройство участка, его вертикальную планировку, организацию отвода поверхностных вод, состояние подъездов, тротуаров, отмосток. Выявляют: недостаточные уклоны отмосток, тротуаров, проездов, не обеспечивающие отвод воды от стен зданий и с прилегающей территории; разрушение или просадка отмосток, тротуаров; выбоины на проезжей части; щели в местах примыкания отмосток, тротуаров; наличие подсыпки грунта у стен здания выше уровня гидроизоляции стен и т.п. Изучают возможность проникновения подземных вод под фундаменты здания или сооружения.

1.1.2. Визуальное обследование фундаментов зданий и сооружений

Признаками деформации грунтов основания или неисправности фундаментов являются: крен какой-либо стены или всего здания в целом; вертикальные или наклонные трещины в стенах; распространяющиеся, как правило, не менее чем на 2/3 высоты здания; трещины в перемычках, перемычечных блоках или стеновых панелях; отрыв наружных стен от внутренних; искривление рядов кладки, карнизов; трещины в швах крупнопанельных и крупноблочных зданий; сколы сопрягающих граней плит перекрытий и покрытия здания; трещины в полах и плитах перекрытий, распространяющиеся по всей толщине перекрытия и расположенные на всех этажах по одной вертикали; перекосы и смещения с опор лестничных площадок и маршей; заклинивание дверей и ворот вследствие перекоса проемов; наклоны и перекосы ферм, колонн, подкрановых балок и других конструкций каркаса; трещины, разрывы и другие повреждения в узлах соединения элементов несущих конструкций; раскрытие и сужение деформационных швов, меняющиеся по высоте здания; отрыв от стен отмостки, тротуара или примыкающего дорожного покрытия.

Для визуального обследования фундамента требуется его частичное вскрытие. С этой целью рядом с фундаментом устраиваются шурфы. Шурф делается такого сечения, чтобы были обеспечены нормальные условия для его отрывки на требуемую глубину. По возможности следует заглублять дно шурфа на 10 см ниже подошвы фундаментов. Однако при значительном притоке подземных вод добиться этого обычно не удается. Открытый водоотлив из шурфа допустим только на очень короткое время. В противном случае вместе с водой из-под подошвы фундаментов будут удаляться частички грунта, что может привести к неравномерной их осадке. Поэтому шурф должен докапываться на намеченную глубину непосредственно перед обследованием фундамента специалистом.

При глубине шурфа более 1,5 м необходимо устанавливать крепление его стенок.

Количество шурфов определяется конструкцией здания, наличием следов деформации его надземной части, грунтовыми условиями. Шурфы обычно предусматриваются у трещин в стенах и фундаментах здания, у наружных и внутренних стен. Устройство шурфов у наружных стен изнутри здания и у внутренних стен при отсутствии подвала часто затруднено, так как нарушает нормальную эксплуатацию помещений первого этажа.

В шурфах производится осмотр поверхности фундаментов, оценка качества кладки, состояние растворных швов; выявляется наличие раковин в бетоне; замеряются трещины в фундаменте, геометрические размеры фундаментов; производится фотофиксация состояния фундаментов; берется проба грунта ниже подошвы фундаментов. После окончательного осмотра фундамента шурф должен быть быстро засыпан с послойным трамбованием грунта, а отмостка или полы в подвале — восстановлены.

Следует иметь в виду, что пред отрывкой шурфов и бурением разведочных скважин необходимо получить разрешение соответствующих организаций на производство этих работ. В противном случае возможно нарушение целостности электрических и телефонных кабелей и сетей водоснабжения и канализации.

Основной задачей осмотра кирпичных стен является выявление в них дефектов и выяснение причин их образования.

При изучении проекта можно определить такие дефекты, как применение в пределах одного этажа различных марок кирпича и раствора, что дает большую вероятность появления участков кладки с недостаточной прочностью / 2 , 10 /.

По проекту также можно выяснить степень пространственной жесткости здания (наличие в достаточном количестве поперечных стен). Следует обратить внимание на проектное армирование стен, узлы опирания балок, прогонов и плит на стены, анкеровку перекрытий в стенах, места расположения и конструктивное решение температурных швов. Например, если несущий кирпичный столб частично перерезывается железобетонным ( рис. 1.1 .), то это приводит к эксцентриситету передачи усилия в столбе, когда вместо всего поперечного сечения столба работает только одна часть, соприкасающаяся с железобетонной конструкцией / 2 , 10 /.

В зданиях с влажными условиями эксплуатации (банях, прачечных) должно быть рассмотрено проектное решение по пароизоляции стен.

При осмотре кирпичных стен должны быть выявлены и зафиксированы все трещины и участки с повышенной влажностью, толщина растворных швов, качество перевязки швов, отвестность и прямолинейность углов кладки и откосов проемов, выпучивания и искривление стен, армированные швы, участки стен с расслоением по вертикали, выкрашивания кирпича и раствора, разрушение из-за вымораживания нижней части цоколя, а также штукатурки и облицовки.

Большой объем информации о состоянии кирпичной кладки дают трещины. Все трещины в кладке можно разделить на три вида: 1) трещины, вызванные перегрузкой стен; 2) трещины, образовавшиеся из-за неравномерной осадки фундамента; 3) трещины, вызванные температурными деформациями. Все они по разному влияют на несущую способность каменных конструкций.

Трещины от перегрузки участков кладки стен могут вызвать обрушение этих участков и расположенной выше кладки.

Рис. 1.1. Неудачное опирание кирпичного столба:

часть сечения столба 1 опирается на железобетонную конструкцию 2, часть — на менее жесткую кирпичную кладку 3

Трещины от неравномерной осадки фундаментов ослабляют места сопряжения отдельных элементов, нарушают пространственную жесткость здания, увеличивают воздухопроницаемость стен.

Трещины температурного происхождения ослабляют участки стен под опорами балок и перемычек, а в торцевых участках здания они по отрицательным последствиям аналогичны трещинам от неравномерной осадки фундаментов.

Важно уметь определить причину появления трещин и с точки зрения оценки их влияния на эксплуатационные качества стен, и с точки зрения правильного выбора метода устранения отрицательных последствий.

Трещины, вызванные перегрузкой участка стен, как правило, вертикальные, имеют малое раскрытие, расположены на небольшом расстоянии друг от друга ( рис. 1.2 ,а). Эти трещины часто сопровождаются выпучиванием версты и вертикальным расслоением кладки.

Трещины, образовавшиеся от неравномерной осадки, фундамента, чаще имеют наклонное направление, значительное раскрытие, расположены на большом расстоянии друг от друга ( рис. 1.2 ,б). Вертикальное расслоение кладки при этом обычно не встречается.

При деформации здания в виде прогиба или перегиба (выгиба) осадочные трещины, как правило, не проходят по всей высоте здания. Трещин не бывает в сжатой зоне кладки (вверху при прогибе и внизу при перегибе). В случае перекоса трещины проходят по всей высоте стены ( рис. 1.2 ,в).

При различной осадке фундаментов под противоположными стенами здания возникает деформация кручения. При этом трещины на противоположных стенах получают наклон в разных направлениях. Следует иметь в виду, что при неравномерной осадке фундаментов могут возникать и трещины от перегрузки стен в результате перераспределения усилий между участками стен.

Трещины, температурного происхождения обычно бывают у торцов здания и у торцов перемычек и заходят по наклонным направлениям в простенок и в перемычечный пояс кладки ( рис. 1.2 ,г). В результате многократного повторения температурного воздействия температурные трещины, расположенные у торцевых стен, могут получить значительное (до нескольких сантиметров) раскрытие.

Рис. 1.2. Схемы трещин, вызванных:

а — перегрузкой; б — неравномерной осадкой фундаментов; в — деформацией перекоса; г — температурным воздействием: 1 — трещины; 2 — перемычки

Осмотр трещин в стенах, возникших вследствие перегрузки, дает полную информацию о состоянии кладки. Первичный осмотр трещин, вызванных неравномерной осадкой фундамента и перепадом температуры, позволяет определить их происхождение и раскрытие, но не дает возможность выяснить, произошла или нет стабилизация деформации. Для получения представления о динамике развития трещин и их стабилизации на стены устанавливают маяки. На каждую трещину ставят не менее двух маяков; один — в месте максимального развития трещины, другой — в месте начала ее развития. Маяки чаще всего изготавливают из гипса (алебастра). На наружных поверхностях стен иногда делают цементные маяки. Маяки могут быть также стеклянными и металлическими.

Гипсовые (цементные) маяки устанавливают на очищенную от штукатурки поверхность стены. Маяки должны иметь уширения на концах (типа восьмерки) ( рис. 1.3 ,а). Толщина гипсового маяка у трещины должна быть минимальной (6. 8 мм).

Стеклянные маяки также имеют уширения на концах и по периметру скреплены с поверхностью стены гипсовым раствором ( рис. 1.3 ,б).

Рис. 1.3. Схемы, маяков на трещинах:

а — гипсовый (цементный); б — стеклянный; в, г — металлические: 1 — трещина; 2 — штукатурка; 3 — стена; 4 — гипсовый, раствор

Металлические маяки изготавливают из двух полосок кровельной стали ( рис. 1.3 , в) и наклеивают на очищенную поверхность стены синтетическим клеем или прибивают гвоздями. Узкая полоска должна иметь нахлестку на широкую полоску. Маяк из оцинкованной стали окрашивают масляной краской. На более широкой полоске наносят риски через 1 мм.

На рис. 1.3 ,г показан вариант металлического маяка из кровельной стали. Прямоугольную пластину первоначально окрашивают в красный цвет. После установки второй (П — образной) пластины весь маяк окрашивают белой краской так, что красная краска сохраняется только под П-образной пластиной. Взаимное смещение пластинок обнаруживают по следу разных красок и измеряют металлической линейкой со скошенным краем.

Точность измерения 0,2. 0,3 мм. На маяках ставят номер и дату. Данные заносят в специальный журнал наблюдений за маяками.

С помощью гипсовых (цементных) маяков можно установить только факт продолжения развития деформаций (образование трещины на маяке) и замерить раскрытие трещины.

Металлические маяки с рисками позволяют выявить значения как раскрытия, так и закрытия трещин.

Деформации раскрытия и сдвиги вдоль трещины можно определить индикатором мессурой с ценой деления 0,1 мм, используя стальные штыри с центрирующим устройством (высверленных или выбитых керном углублений). Штыри заделывают по обе стороны трещины на расстоянии 60. 100 мм от нее. Если металлический маяк установлен в трудно доступном месте, то показания его шкалы можно снимать на расстоянии с помощью бинокля, теодолита или зрительной трубы.

Необходимо следить не только за раскрытием трещин, но и за их удлинением. С этой целью, после того как произошло удлинение трещины, на ее конец ставят новый маяк.

При анализе поведения маяков следует иметь в виду, что трещина в кладке становится естественным температурным швом. Установленный на ней маяк будет регистрировать не только деформации от неравномерной осадки фундамента, но и температурные. Поэтому при перепадах температуры даже при отсутствии неравномерной осадки фундаментов в маяке практически всегда будут возникать волосные трещины.

Необходимо постоянно проверять, не произошел ли отрыв маяка от поверхности стены. В случае отрыва устанавливают новый маяк.

Ширину раскрытия трещин измеряют следующим образом: при раскрытии более 2 мм — масштабной линейкой (точность измерения 0,3 мм); при раскрытии менее 2 мм — целлулоидными или бумажными трафаретами с нанесенными на них линиями толщиной 0,05. 2 мм. Краями трещину совмещают с соответствующей линией на трафарете.

Более точно ширину раскрытия трещин (но не для каменных конструкций это редко требуется) можно определить с помощью градуированной лупы или мерного микроскопа (МИР — 2; МПБ — 2) с 2,5. 24-кратным увеличением.

Глубину несквозных трещин в кладке находят по следу на поверхности керна, высверленного из тела конструкции, и с помощью стальных комбинированных щупов.

Качество перевязки швов кладки, прямолинейность ее и вертикальность стен позволяет судить о квалификации каменщиков, что важно для оценки прочности кладки.

Вертикальность углов и участков стен устанавливают при визуальном обследовании с помощью отвесов и вертикальных уровней.

Соосность участков стен, разделенных перекрытием, можно найти, используя два отвеса ( рис. 1.4 ). Несоосность осей стен при этом вычисляют по формуле:

е=алв1 a лн2 + ( h 1 h 2 )/2 (1.1)

Выпучивание и искривление стен определяют с помощью стальной проволоки, натянутой вдоль стены горизонтально и вертикально, или деревянной рейкой. От проволоки или рейки измеряют расстояние до поверхности стены.

Толщину стены при отсутствии доступа к ее другой стороне можно найти, просверлив в ней сквозное отверстие (зондирование).

С помощью зондирования определяют состояние отдельных слоев кладки по глубине стены.

Рис. 1.4 Схема измерения соосности и отклонения от вертикали стен и столбов, разделенных перекрытиями:

1 — стена (столб) нижнего этажа; 2 — стена (столб) второго этажа; 3 — точки подвески отвесов; 4 — отверстия в перекрытии; 5 — отвесы; 6 — сосуд с водой

Расслоение кладки по высоте легко определяется простукиванием стены с поверхности. Если звук удара глухой, то в толще стены имеется или вертикальное расслоение, или пустота (канал). При наличии пустоты (канала) глухой звук получается только в пределах этой пустоты. У краев пустоты звук будет звонкий. При вертикальном расслоении кладки глухой звук прослушивается по всему участку стены (например, по всей поверхности простенка или столба). Строители говорят, что при вертикальном расслоении кладки она «бухтит».

Если арматура кладки не выходит на ее поверхность, то характер армирования можно определить только путем частичной расчистки швов.

Прочность кладки при визуальном обследовании находят взятием образцов кирпича и раствора.

Опытный специалист может ориентировочно установить прочность кирпича путем его раскалывания молотком, а прочность раствора — царапаньем гвоздем. Ошибки в определении прочности кирпича и раствора при этом незначительно скажутся на определении прочности кладки (при изменении прочности кирпича в 3 раза прочность кладки меняется приблизительно в 1,7 раза, а при изменении прочности раствора в 4 раза, прочность кладки изменяется в 1,2 раза / 10 /.

1.1.4. Визуальные методы обследования стен крупнопанельных и крупноблочных жилых, общественных и промышленных зданий

При визуальном обследовании стен крупнопанельных и крупноблочных зданий выявляются: смещение и перекосы стеновых панелей (блоков) в плоскости и из плоскости стен; трещины в панелях (блоках) от силовых, температурных и влажностных воздействий и от неравномерной осадки фундаментов; разрушение наружных слоев панелей вследствие попеременного замораживания и оттаивания; коррозия закладных и накладных крепежей деталей в стыках и арматуры панелей; толщина, прочность и однородность горизонтальных растворных швов; протекание и высокая воздухопроницаемость вертикальных швов в результате разрушения элементов заделки стыков (изоляционного слоя, цементного раствора, уплотняющих прокладок и герметизирующих мастик).

Трещины в панелях и блоках имеют тот же характер, что и трещины в кирпичных стенах. Силовые трещины расположены вертикально на близком расстоянии друг от друга и часто сопровождаются внутренними трещинами — расслоением материала по вертикали. Температурные трещины обычно располагаются у перемычек оконных и дверных проемов. Трещины от неравномерной осадки фундаментов являются, как правило, сквозными, проходят по углам проемов и их подъем направлен в сторону больших осадок фундамента ( рис. 1.5 ).

При неравномерной осадке фундаментов происходит, кроме того, значительное раскрытие вертикальных швов стен. Для наблюдения за развитием трещин ставятся маяки. Делается это так же, как и на кирпичных стенах.

Рис. 1.5. Схема трещин в стене крупнопанельного здания от неравномерной осадки фундаментов:

1 — поперечный фундамент, давший осадку большую, чем примыкающие фундаменты; 2 — насыпной грунт; 3 — трещины

Состояние закладных деталей и связей определяется выборочным вскрытием узлов сопряжения панелей друг с другом и с перекрытиями.

О неблагополучии с закладными деталями можно судить и без вскрытия узлов по внешним признакам интенсивной коррозии (ржавчина на внутренней и наружной поверхности стен; разрушение защитного слоя бетона; деформации, сопровождающиеся выходом из плоскости стен отдельных наружных панелей; трещины с раскрытием более 1,5 см).

Прочность раствора швов определяется так же, как и в кирпичных стенах.

Поскольку современные Нормы / 41 / требуют, чтобы крупнопанельное здание было устойчиво к прогрессирующему (цепному) разрушению в случае локального воздействия (взрыва газа или других взрывоопасных веществ, пожара и т.п.), то при обследовании крупнопанельных зданий необходимо выявить наличие конструктивных элементов, стремящихся не допустить такого разрушения.

Препятствием к прогрессирующему разрушению крупнопанельных здания является наличие связей, перемычек и швов специальных конструкций. Связи должны разрушаться пластически, т.е. при больших абсолютных деформациях. Чтобы не допустить выкалывания бетона и разрушения сварных швов при больших деформациях связей, анкеровка закладных деталей и сварных соединений рассчитывается на усилие в 1,6 раза больше, чем сама связь. Швы должны иметь шпонки, прочность которых на срез в 1,5 раза больше, чем их прочность на сжатие. Предусматриваются специальные металлические связи, работающие в плоскости перекрытия на растяжение и сдвиг, а также междуэтажные связи, обеспечивающие работу горизонтальных стыков между перекрытиями и стенами на растяжение и сдвиг.

При визуальном обследовании крупнопанельных и крупноблочных стен применяются те же инструменты, что и при обследовании кирпичных стен.

1.1.5. Визуальные методы обследования железобетонных конструкций в жилых, общественных и промышленных зданиях

До визуального обследования железобетонных конструкций желательно изучить проект здания или сооружения в целях установления их конструктивной схемы, конструкций узлов сопряжении, места и конструкции температурных и осадочных швов, а также вертикальных и горизонтальных связей.

При визуальном обследовании железобетонных конструкций выявляют: отклонение вертикальных элементов от вертикали и горизонтальных от горизонтали (наклоны, прогибы): смещение отдельных элементов в плане; геометрические размеры сечений; дефекты бетонирования (раковины и скопление инертных, слабо связанных между собой); наличие трещин, механических повреждений, смещений в местах сопряжения элементов друг с другом и с другими конструкциями; растрескивания и отслоение защитного слоя бетона; коррозию арматуры; нарушение сцепления бетона с арматурой; увлажненные участки; карбонизацию бетона.

При осмотре подкрановых конструкций проверяют: зоны крепления подкрановых балок к колоннам и тормозных балок к подкрановым; узлы крепления рельсов к балкам; соосность рельсов и подкрановых балок; исправность подкрановых путей (отсутствие недопустимых сужений или расширений колеи, перекосов и дефектов профиля); наличие всех элементов решетчатых конструкций балок (ферм) и связей.

Определяя причины недопустимых прогибов изгибаемых элементов следует иметь в виду, что трещины при недостаточной несущей способности обычно сильно раскрыты на внешней стороне кривой прогиба. Наличие слабо раскрытых трещин и недопустимого прогиба свидетельствует о малой изгибной жесткости элемента при его достаточной несущей способности. Наличие же недопустимого прогиба при отсутствии трещин скорее всего говорит об изначальном искривлении элемента, полученном в процессе его формования.

Трещины, в бетоне выявляют путем визуального осмотра поверхности конструкций с выборочным снятием защитных покрытий (шпаклевки, окраски, штукатурки, облицовки). Фиксируют характер и расположение трещин , а также ширину и глубину их раскрытия. Ширину раскрытия трещин определяют градуированной лупой или мерным микроскопом. Глубину трещины, как и в кирпичных конструкциях, устанавливают по следу на поверхности керна, высверленного из тела конструкции. Измерение глубины трещин с помощью стальных комбинированных щупов дает заниженное значение глубины трещины.

Трещины в железобетонных конструкциях могут быть вызваны: воздействием нагрузки, усадки, температуры; неравномерной осадкой фундаментов; влиянием арматуры.

Раскрытие трещин в растянутой зоне элементов, вызванных воздействием нагрузки, регламентируется Нормами / 63 /. Если нормальные трещины в изгибаемых элементах раскрыты выше допустимых нормами пределов для элементов без предварительного напряжения арматуры более 0,3. 0,5 м), то это говорит о перегрузке конструкции. Раскрытие трещин в изгибаемых элементах до 0,5. 1 мм свидетельствует об образовании пластических деформаций в арматуре вследствие их перегрузки. Раскрытие трещин более 1 мм является признаком аварийного состояния конструкции.

Наклонные трещины на приопорных участках изгибаемых элементов, скрытые свыше допустимых нормами пределов (для элементов без предварительного напряжения арматуры более 0,5 мм), свидетельствуют о недостаточной несущей способности по поперечной силе или о недостаточной анкеровке продольных стержней на опоре.

Наличие на приопорном участке изгибаемого предварительно напряженного элемента наклонной трещины, выходящей на нижнюю грань края опоры, означает потерю анкеровки предварительно напрягаемой арматуры. О том же говорят и трещины у торца конструкции, идущие вдоль предварительно напряженной арматуры иногда со скалыванием лещадок по бокам. Некоррозионные и неусадочные трещины, расположенные в сжатой зоне, направленные вдоль действующего усилия и сопровождающиеся выколом лещадок, свидетельствуют о большой перегрузке конструкции и ее аварийном состоянии.

Усадочные трещины в отдельных железобетонных элементах обычно располагаются на их поверхности, не проникая на большую глубину. Образовываются они в период твердения и набора прочности бетона при плохом уходе за железобетонной конструкцией в этот период. Края этих трещин часто имеют округлую форму. В протяженных монолитных железобетонных сооружениях и в статически неопределимых конструкциях, в результате усадки бетона могут возникнуть сквозные трещины, пересекающие все сооружение или проходящие по границе стыка одного элемента сооружения с другим.

Температурные трещины образуются в железобетонных конструкциях при значительной их протяженности, большом перепаде температуры и отсутствии или редком расположении температурно-усадочных швов. Эти трещины пересекают все сечение конструкции. Они могут иметь значительное раскрытие.

При недопустимой по значению неравномерности осадки фундаментов в статически неопределимых конструкциях возникают трещины, аналогичные трещинам от воздействия нагрузки.

Если сжатая продольная арматура закреплена поперечной арматурой в точках, удаленных друг от друга больше, чем это допускают Нормы / 63 /, то может произойти потеря устойчивости сжатых стержней с выколом защитного слоя бетона. При этом образуются трещины, расположенные вдоль сжатых стержней.

Аналогичные трещины появляются вдоль арматуры, подвергшейся коррозии с увеличением объема.

При близком расположении арматурных стержней к поверхности конструкции часто возникают усадочные трещины вдоль этих стержней.

Следует иметь в виду, что поперечные трещины в железобетонных конструкциях могут образовываться при распалубке и в результате неправильного складирования и перевозки.

В элементах, имеющих рабочую арматуру с одной стороны (если эта арматура попала при складировании в сжатую зону сечения), могут образовываться сильно раскрытые трещины почти по всей высоте поперечного сечения элемента. Трещины, возникшие в период распалубки сборного элемента в результате нарушения технологии распалубки или дефекта опалубочной формы, обычно располагаются в углах элемента и у отверстий в нем. Эти трещины всегда снижают жесткость элемента, а иногда и уменьшают его несущую способность.

Трещины от воздействия нагрузки (от перегрузки элемента), усадки и температуры дают полную информацию о состоянии элемента при разовом осмотре конструкции.

Трещины от неравномерной осадки фундаментов требуют длительного наблюдения, поэтому на них следует устанавливать маяки по типу, приведенному в п. 1.1.3 . Маяки нужно ставить на трещину в случае появления сомнений в правильности определения причины ее возникновения.

Размеры сечения балок получают с помощью их измерения линейками или рулетками. Толщину плит определяют путем устройства сквозного отверстия сверлением или вырубанием.

Количество арматурных стержней, их диаметр и предполагаемый класс стали устанавливают путем пробивки борозд глубиной до половины диаметра арматурных стержней. В балках и ребрах плит борозды пробивают перпендикулярно к оси балок или ребер в середине пролета и у опор. Для осмотра поперечной арматуры борозды делают вдоль оси балки или ребра снизу или сбоку у опор.

Определить класс арматурной стали можно по внешнему виду с достаточной точностью, если сталь не является высокопрочной периодического профиля.

До 50-х годов употреблялась арматурная сталь круглого профиля. Прочностные ее показатели соответствовали показателям стали марок Ст0, Ст1, Ст2, Ст3 и Ст5. Сопротивление арматурной стали можно принимать по нормам, применявшимся во время возведения конструкции. С 50-х годов начали использовать арматурную сталь класса A — II , а затем и А- III . Арматурная сталь класса A-II, как известно, имеет ребра в виде трехзаходной винтовой линии, а класса A — III — в виде «елочки».

В предварительно наряженных элементах стержневую арматуру классов А-1У. А-У1 по внешнему виду различить нельзя. Высокопрочную арматуру классов B — II , Вр-II и К-7 определить по внешнему виду не представляет сложности.

Работу по пробивке борозд нужно производить осторожно, предварительно максимально разгрузив осматриваемую конструкцию. После осмотра конструкции пробитые борозды следует тщательно зашпаклевать цементным раствором. Желательно применять шпаклевку на эпоксидной основе.

Глубину карбонизации бетона защитных слоев железобетонных конструкций устанавливают по изменениям величины рН. Для этого вырубают образец бетона на глубину от поверхности элемента конструкции до арматуры, смачивают поверхность скола чистой водопроводной водой, удаляют излишек воды фильтровальной бумагой, а затем наносят с помощью пипетки 0,1%-ный раствор фенолфталеина в этиловом спирте. Бетон в карбонизированной зоне остается серым, а в некарбонизированной приобретет ярко-малиновую окраску. Через минуту после нанесения фенолфталеина измеряют линейкой с точностью до 0,5 мм расстояние от поверхности образца до грани ярко окрашенной зоны в направлении, перпендикулярном к поверхности элемента конструкции. Измеренная величина является глубиной карбонизации бетона.

При визуальном обследовании железобетонных конструкций применяют те же инструменты, что и при обследовании каменных конструкций.

1.1.6. Визуальные методы обследования металлических конструкций промышленных, жилых и общественных зданий

При визуальном осмотре металлических конструкций выявляют: деформации отдельных элементов или конструкции в целом; смещения из проектного положения отдельных элементов и конструкций в целом; отсутствие отдельных элементов в конструкции; искажение формы или нарушение геометрических размеров сечения или профиля элементов; механические и температурные повреждения металла; наличие трещин в металле; дефекты и разрушение стыковых и узловых соединений; смещения в узлах сопряженных конструкций; разрушения антикоррозионных защитных покрытий и коррозионные повреждения металла.

При осмотре конструкций, выполненных из разнородных металле (например стали и алюминия), необходимо выявить участки с отсутствующими или нарушенными прокладками или пленками из диэлектриков в сопряжениях разнородных металлов.

До измерения величины коррозионных повреждений элементы металлических конструкций предварительно очищают в нескольких местах от загрязнений и продуктов коррозии. Затем с помощью микрометра или штангенциркуля измеряют толщину элемента. Минимальную из измеренных толщин элемента принимают за расчетную.

Толщину замкнутого профиля при визуальном осмотре определить удается не всегда, ток как высверливание отверстий в элементах несущих конструкций обычно недопустимо.

Ширину раскрытия трещин определяют так же, как и в конструкциях из других материалов, — с помощью градуированной лупы или мерного микроскопа. Места, где возможно появление трещин, должны быть очищены от грязи и пыли и в необходимых случаях отполированы.

Внешние дефекты и повреждения сварных швов металлических конструкций выявляют при визуальном осмотре с предварительной очисткой шва и прилегающего к нему металла от шлака и металлических брызг. При этом может использоваться лупа.

В результате визуального осмотра можно выявить следующие дефекты и повреждения сварных швов: неполномерность шва, резкие переходы от основного металла к наплавленному, наплывы и натеки наплавленного металла, неравномерную ширину и перерывы шва, кратеры, поры и неметаллические включения на поверхности шва, трещины в шве и околошовной зоне, подрезы и прожоги основного металла.

В болтовых и заклепочных соединениях при визуальном осмотре выявляют: уменьшенное по сравнению с проектом количество и диаметр болтов и заклепок; отсутствие гаек; смещение осей болтов или заклепок от проектного положения; отрыв и маломерность головок заклепок; избыток или недостаток по высоте потайных заклепок; косые заклепки, трещиноватость или рябину на поверхности головки заклепок; зарубки металла обжимкой, a также трещины, идущие от заклепочных отверстий.

Для выявления этих дефектов применяют линейки, рулетки, штангенциркули, шаблоны и т.д.

Неплотную затяжку болтов, дрожание и подвижность заклепок, неплотное заполнение отверстий телом заклепки устанавливают путем простукивания молотком весом 300. 400 г; прикладывая при этом с противоположной стороны палец, который должен одновременно касаться головки болта, гайки или головки заклепки и соединяемого элемента.

Неплотность прилегания головок заклепок к склепываемому пакету определяют с помощью щупа толщиной 0,2 мм.

1.1.7. Визуальное обследование перекрытий каменных зданий

Во многих старых зданиях еще сохранились деревянные перекрытия, а также перекрытия по деревянными или стальным балкам с заполнением между ними в виде кирпичных или бетонных сводиков. Над подвалами и первыми этажами в старых зданиях устраивались перекрытия по каменным и бетонным сводам. В зданиях, построенных после середины 50-х годов текущего столетия, перекрытия, как правило, выполнены из сборных железобетонных плит. В промышленных зданиях Перекрытия могут быть из монолитного и сборного железобетона.

Путем вскрытия участков перекрытия определяется его конструкция и состояние полов (чистых и черных), стяжки, подготовки под полы, гидроизоляции, утеплителя или звукоизоляционной засыпки, наката, подшивки, штукатурки.

Количество мест вскрытия перекрытий зависит от площади обследуемых помещений и принимается по табл. 1.1 / 53 /.

Количество мест вскрытия при обследовании перекрытий

Обследуемая площадь, м 2

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *